Menú

Fórmulas básicas de logaritmos con ejemplos. Logaritmo: propiedades, fórmulas, gráfico

Todo sobre las uvas

Entonces, tenemos potencias de dos. Si tomas el número de la línea inferior, podrás encontrar fácilmente la potencia a la que tendrás que elevar dos para obtener este número. Por ejemplo, para obtener 16, debes elevar dos a la cuarta potencia. Y para obtener 64, debes elevar dos a la sexta potencia. Esto se puede ver en la tabla.

Y ahora, en realidad, la definición del logaritmo:

El logaritmo en base a de x es la potencia a la que se debe elevar a para obtener x.

Notación: log a x = b, donde a es la base, x es el argumento, b es a lo que realmente es igual el logaritmo.

Por ejemplo, 2 3 = 8 ⇒ log 2 8 = 3 (el logaritmo en base 2 de 8 es tres porque 2 3 = 8). Con el mismo éxito, log 2 64 = 6, ya que 2 6 = 64.

La operación de encontrar el logaritmo de un número con una base determinada se llama logaritmización. Entonces, agreguemos una nueva línea a nuestra tabla:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
iniciar sesión 2 2 = 1iniciar sesión 2 4 = 2iniciar sesión 2 8 = 3iniciar sesión 2 16 = 4iniciar sesión 2 32 = 5registro 2 64 = 6

Desafortunadamente, no todos los logaritmos se calculan tan fácilmente. Por ejemplo, intenta encontrar log 2 5. El número 5 no está en la tabla, pero la lógica dicta que el logaritmo estará en algún lugar del intervalo. porque 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Estos números se llaman irracionales: los números después del punto decimal se pueden escribir hasta el infinito y nunca se repiten. Si el logaritmo resulta irracional, es mejor dejarlo así: log 2 5, log 3 8, log 5 100.

Es importante entender que un logaritmo es una expresión con dos variables (la base y el argumento). Mucha gente al principio confunde dónde está la base y dónde está el argumento. Para evitar molestos malentendidos, basta con mirar la imagen:

[Título de la imagen]

Ante nosotros no hay más que la definición de logaritmo. Recordar: el logaritmo es una potencia, en el que se debe construir la base para obtener un argumento. Es la base la que está elevada a una potencia; está resaltada en rojo en la imagen. ¡Resulta que la base siempre está abajo! Les digo a mis alumnos esta maravillosa regla desde la primera lección, y no surge ninguna confusión.

Hemos descubierto la definición; todo lo que queda es aprender a contar logaritmos, es decir. deshazte del signo "registro". Para empezar, observamos que de la definición se desprenden dos hechos importantes:

  1. El argumento y la base siempre deben ser mayores que cero. Esto se desprende de la definición de grado mediante un exponente racional, al que se reduce la definición de logaritmo.
  2. La base debe ser diferente de uno, ya que uno, en cualquier grado, sigue siendo uno. Debido a esto, la pregunta “¿a qué potencia hay que elevar uno para obtener dos” no tiene sentido. ¡No existe tal grado!

Estas restricciones se denominan rango de valores aceptables(ODZ). Resulta que la ODZ del logaritmo se ve así: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Tenga en cuenta que no existen restricciones sobre el número b (el valor del logaritmo). Por ejemplo, el logaritmo bien puede ser negativo: log 2 0,5 = −1, porque 0,5 = 2-1.

Sin embargo, ahora consideraremos sólo expresiones numéricas, donde no es necesario conocer el VA del logaritmo. Los autores de los problemas ya han tenido en cuenta todas las restricciones. Pero cuando entren en juego las ecuaciones y desigualdades logarítmicas, los requisitos de la licencia de conducir serán obligatorios. Después de todo, la base y el argumento pueden contener construcciones muy sólidas que no necesariamente corresponden a las restricciones anteriores.

Ahora veamos el esquema general para calcular logaritmos. Consta de tres pasos:

  1. Expresa la base a y el argumento x como una potencia con la mínima base posible mayor que uno. En el camino, es mejor deshacerse de los decimales;
  2. Resuelva la ecuación para la variable b: x = a b ;
  3. El número b resultante será la respuesta.

¡Eso es todo! Si el logaritmo resulta irracional, esto ya será visible en el primer paso. El requisito de que la base sea mayor que uno es muy importante: esto reduce la probabilidad de error y simplifica enormemente los cálculos. Lo mismo ocurre con las fracciones decimales: si las conviertes inmediatamente en fracciones normales, habrá muchos menos errores.

Veamos cómo funciona este esquema usando ejemplos específicos:

Tarea. Calcula el logaritmo: log 5 25

  1. Imaginemos la base y el argumento como una potencia de cinco: 5 = 5 1 ; 25 = 5 2 ;
  2. Creemos y resolvamos la ecuación:
    iniciar sesión 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Recibimos la respuesta: 2.

Tarea. Calcula el logaritmo:

[Título de la imagen]

Tarea. Calcula el logaritmo: log 4 64

  1. Imaginemos la base y el argumento como una potencia de dos: 4 = 2 2 ; 64 = 2 6 ;
  2. Creemos y resolvamos la ecuación:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Recibimos la respuesta: 3.

Tarea. Calcula el logaritmo: log 16 1

  1. Imaginemos la base y el argumento como una potencia de dos: 16 = 2 4 ; 1 = 2 0 ;
  2. Creemos y resolvamos la ecuación:
    iniciar sesión 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Recibimos la respuesta: 0.

Tarea. Calcula el logaritmo: log 7 14

  1. Imaginemos la base y el argumento como una potencia de siete: 7 = 7 1 ; 14 no se puede representar como una potencia de siete, ya que 7 1< 14 < 7 2 ;
  2. Del párrafo anterior se desprende que el logaritmo no cuenta;
  3. La respuesta es ningún cambio: log 7 14.

Una pequeña nota sobre el último ejemplo. ¿Cómo puedes estar seguro de que un número no es una potencia exacta de otro número? Es muy simple: simplemente factorízalo en factores primos. Y si esos factores no se pueden reunir en potencias con los mismos exponentes, entonces el número original no es una potencia exacta.

Tarea. Descubra si los números son potencias exactas: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - grado exacto, porque sólo hay un multiplicador;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - no es una potencia exacta, ya que existen dos factores: 3 y 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - grado exacto;
35 = 7 · 5 - nuevamente no es una potencia exacta;
14 = 7 · 2 - nuevamente no es un grado exacto;

Tenga en cuenta también que los números primos en sí son siempre potencias exactas de sí mismos.

logaritmo decimal

Algunos logaritmos son tan comunes que tienen un nombre y símbolo especiales.

El logaritmo decimal de x es el logaritmo en base 10, es decir La potencia a la que se debe elevar el número 10 para obtener el número x. Designación: lg x.

Por ejemplo, registro 10 = 1; iniciar sesión 100 = 2; lg 1000 = 3-etc.

De ahora en adelante, cuando aparezca una frase como “Buscar lg 0.01” en un libro de texto, sepa que no se trata de un error tipográfico. Este es un logaritmo decimal. Sin embargo, si no estás familiarizado con esta notación, siempre puedes reescribirla:
registro x = registro 10 x

Todo lo que es cierto para los logaritmos ordinarios también lo es para los logaritmos decimales.

Logaritmo natural

Hay otro logaritmo que tiene su propia designación. En cierto modo, es incluso más importante que el decimal. Estamos hablando del logaritmo natural.

El logaritmo natural de x es el logaritmo en base e, es decir la potencia a la que se debe elevar el número e para obtener el número x. Designación: ln x .

Muchos se preguntarán: ¿cuál es el número e? Este es un número irracional; su valor exacto no se puede encontrar ni escribir. Daré sólo las primeras cifras:
mi = 2,718281828459...

No entraremos en detalles sobre qué es este número y por qué es necesario. Solo recuerda que e es la base del logaritmo natural:
ln x = log e x

Así, ln e = 1; En mi 2 = 2; En mi 16 = 16 - etc. Por otro lado, ln 2 es un número irracional. En general, el logaritmo natural de cualquier número racional es irracional. Excepto, por supuesto, uno: ln 1 = 0.

Para los logaritmos naturales, son válidas todas las reglas que son verdaderas para los logaritmos ordinarios.


El enfoque de este artículo es logaritmo. Aquí daremos una definición de logaritmo, mostraremos la notación aceptada, daremos ejemplos de logaritmos y hablaremos sobre logaritmos naturales y decimales. Después de esto consideraremos la identidad logarítmica básica.

Navegación de páginas.

Definición de logaritmo

El concepto de logaritmo surge al resolver un problema en cierto sentido inverso, cuando es necesario encontrar un exponente a partir de un valor de exponente conocido y una base conocida.

Pero basta de prefacios, es hora de responder a la pregunta “¿qué es un logaritmo”? Demos la definición correspondiente.

Definición.

Logaritmo de b en base a, donde a>0, a≠1 y b>0 es el exponente al que necesitas elevar el número a para obtener b como resultado.

En esta etapa, observamos que la palabra hablada "logaritmo" debería plantear inmediatamente dos preguntas de seguimiento: "qué número" y "sobre qué base". En otras palabras, simplemente no existe logaritmo, sino sólo el logaritmo de un número con respecto a alguna base.

entremos ahora mismo notación logarítmica: el logaritmo de un número b en base a generalmente se denota como log a b. El logaritmo de un número b en base e y el logaritmo en base 10 tienen sus propias designaciones especiales lnb y logb, respectivamente, es decir, no escriben log e b, sino lnb, y no log 10 b, sino lgb.

Ahora podemos dar: .
y los registros No tiene sentido, ya que en el primero de ellos hay un número negativo bajo el signo del logaritmo, en el segundo hay un número negativo en la base, y en el tercero hay un número negativo bajo el signo del logaritmo y una unidad en la base.

Ahora hablemos de reglas para leer logaritmos. Log a b se lee como "el logaritmo de b en base a". Por ejemplo, log 2 3 es el logaritmo de tres con base 2 y es el logaritmo de dos punto dos tercios con base raíz cuadrada de cinco. El logaritmo en base e se llama logaritmo natural, y la notación lnb dice "logaritmo natural de b". Por ejemplo, ln7 es el logaritmo natural de siete y lo leeremos como el logaritmo natural de pi. El logaritmo en base 10 también tiene un nombre especial: logaritmo decimal, y lgb se lee como "logaritmo decimal de b". Por ejemplo, lg1 es el logaritmo decimal de uno y lg2.75 es el logaritmo decimal de dos coma siete cinco centésimas.

Vale la pena detenerse por separado en las condiciones a>0, a≠1 y b>0, bajo las cuales se da la definición del logaritmo. Expliquemos de dónde vienen estas restricciones. Una igualdad de la forma llamada , que se deriva directamente de la definición de logaritmo dada anteriormente, nos ayudará a lograr esto.

Empecemos con a≠1. Dado que uno elevado a cualquier potencia es igual a uno, la igualdad sólo puede ser cierta cuando b=1, pero log 1 1 puede ser cualquier número real. Para evitar esta ambigüedad, se supone a≠1.

Justifiquemos la conveniencia de la condición a>0. Con a=0, según la definición de logaritmo, tendríamos igualdad, lo cual sólo es posible con b=0. Pero entonces log 0 0 puede ser cualquier número real distinto de cero, ya que cero elevado a cualquier potencia distinta de cero es cero. La condición a≠0 nos permite evitar esta ambigüedad. Y cuando un<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Finalmente, la condición b>0 se deriva de la desigualdad a>0, ya que , y el valor de una potencia con base positiva a es siempre positivo.

Para concluir este punto, digamos que la definición dada de logaritmo le permite indicar inmediatamente el valor del logaritmo cuando el número bajo el signo del logaritmo es una determinada potencia de la base. En efecto, la definición de logaritmo nos permite afirmar que si b=a p, entonces el logaritmo del número b en base a es igual a p. Es decir, la igualdad log a a p =p es verdadera. Por ejemplo, sabemos que 2 3 =8, entonces log 2 8=3. Hablaremos más sobre esto en el artículo.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Explíquelo de forma más sencilla. Por ejemplo, \(\log_(2)(8)\) es igual a la potencia a la que se debe elevar \(2\) para obtener \(8\). De esto queda claro que \(\log_(2)(8)=3\).

Ejemplos:

\(\log_(5)(25)=2\)

porque \(5^(2)=25\)

\(\log_(3)(81)=4\)

porque \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

porque \(2^(-5)=\)\(\frac(1)(32)\)

Argumento y base del logaritmo.

Cualquier logaritmo tiene la siguiente “anatomía”:

El argumento de un logaritmo generalmente se escribe en su nivel y la base se escribe en un subíndice más cercano al signo del logaritmo. Y esta entrada dice así: “logaritmo de veinticinco en base cinco”.

¿Cómo calcular el logaritmo?

Para calcular el logaritmo, debes responder la pregunta: ¿a qué potencia se debe elevar la base para obtener el argumento?

Por ejemplo, calcula el logaritmo: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) ¿A qué potencia se debe elevar \(4\) para obtener \(16\)? Obviamente el segundo. Es por eso:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) ¿A qué potencia se debe elevar \(\sqrt(5)\) para obtener \(1\)? ¿Qué poder hace que cualquier número uno? ¡Cero, por supuesto!

\(\log_(\sqrt(5))(1)=0\)

d) ¿A qué potencia se debe elevar \(\sqrt(7)\) para obtener \(\sqrt(7)\)? En primer lugar, cualquier número elevado a la primera potencia es igual a sí mismo.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) ¿A qué potencia se debe elevar \(3\) para obtener \(\sqrt(3)\)? Sabemos que es una potencia fraccionaria, lo que significa que la raíz cuadrada es la potencia de \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Ejemplo : Calcular logaritmo \(\log_(4\sqrt(2))(8)\)

Solución :

\(\log_(4\sqrt(2))(8)=x\)

Necesitamos encontrar el valor del logaritmo, denotémoslo como x. Ahora usemos la definición de logaritmo:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

¿Qué conecta \(4\sqrt(2)\) y \(8\)? Dos, porque ambos números se pueden representar de dos en dos:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

A la izquierda usamos las propiedades del grado: \(a^(m)\cdot a^(n)=a^(m+n)\) y \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Las bases son iguales, pasamos a la igualdad de indicadores.

\(\frac(5x)(2)\) \(=3\)


Multiplica ambos lados de la ecuación por \(\frac(2)(5)\)


La raíz resultante es el valor del logaritmo.

Respuesta : \(\log_(4\sqrt(2))(8)=1,2\)

¿Por qué se inventó el logaritmo?

Para entender esto, resolvamos la ecuación: \(3^(x)=9\). Simplemente haga coincidir \(x\) para que la ecuación funcione. Por supuesto, \(x=2\).

Ahora resuelve la ecuación: \(3^(x)=8\). ¿A qué es igual x? Ese es el punto.

Los más inteligentes dirán: “X es un poco menos que dos”. ¿Cómo escribir exactamente este número? Para responder a esta pregunta, se inventó el logaritmo. Gracias a él, la respuesta aquí se puede escribir como \(x=\log_(3)(8)\).

Quiero enfatizar que \(\log_(3)(8)\), como cualquier logaritmo es solo un número. Sí, parece inusual, pero es breve. Porque si quisiéramos escribirlo como decimal, quedaría así: \(1.892789260714.....\)

Ejemplo : Resuelve la ecuación \(4^(5x-4)=10\)

Solución :

\(4^(5x-4)=10\)

\(4^(5x-4)\) y \(10\) no se pueden llevar a la misma base. Esto significa que no puedes prescindir de un logaritmo.

Usemos la definición de logaritmo:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Inviertamos la ecuación para que X esté a la izquierda.

\(5x-4=\log_(4)(10)\)

Frente a nosotros. Movamos \(4\) hacia la derecha.

Y no le tengas miedo al logaritmo, trátalo como a un número normal.

\(5x=\log_(4)(10)+4\)

Divide la ecuación por 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Esta es nuestra raíz. Sí, parece inusual, pero no eligen la respuesta.

Respuesta : \(\frac(\log_(4)(10)+4)(5)\)

Logaritmos decimales y naturales

Como se indica en la definición de logaritmo, su base puede ser cualquier número positivo excepto uno \((a>0, a\neq1)\). Y entre todas las bases posibles, hay dos que ocurren con tanta frecuencia que se inventó una notación corta especial para los logaritmos con ellas:

Logaritmo natural: un logaritmo cuya base es el número de Euler \(e\) (igual a aproximadamente \(2.7182818…\)), y el logaritmo se escribe como \(\ln(a)\).

Eso es, \(\ln(a)\) es lo mismo que \(\log_(e)(a)\)

Logaritmo decimal: un logaritmo cuya base es 10 se escribe \(\lg(a)\).

Eso es, \(\lg(a)\) es lo mismo que \(\log_(10)(a)\), donde \(a\) es algún número.

Identidad logarítmica básica

Los logaritmos tienen muchas propiedades. Uno de ellos se llama "Identidad logarítmica básica" y tiene este aspecto:

\(a^(\log_(a)(c))=c\)

Esta propiedad se deriva directamente de la definición. Veamos exactamente cómo surgió esta fórmula.

Recordemos una breve notación de la definición de logaritmo:

si \(a^(b)=c\), entonces \(\log_(a)(c)=b\)

Es decir, \(b\) es lo mismo que \(\log_(a)(c)\). Entonces podemos escribir \(\log_(a)(c)\) en lugar de \(b\) en la fórmula \(a^(b)=c\). Resultó \(a^(\log_(a)(c))=c\) - la identidad logarítmica principal.

Puedes encontrar otras propiedades de los logaritmos. Con su ayuda, puedes simplificar y calcular los valores de expresiones con logaritmos, que son difíciles de calcular directamente.

Ejemplo : Encuentra el valor de la expresión \(36^(\log_(6)(5))\)

Solución :

Respuesta : \(25\)

¿Cómo escribir un número como logaritmo?

Como se mencionó anteriormente, cualquier logaritmo es solo un número. Lo contrario también es cierto: cualquier número se puede escribir como un logaritmo. Por ejemplo, sabemos que \(\log_(2)(4)\) es igual a dos. Luego, en lugar de dos, puedes escribir \(\log_(2)(4)\).

Pero \(\log_(3)(9)\) también es igual a \(2\), lo que significa que también podemos escribir \(2=\log_(3)(9)\) . Lo mismo ocurre con \(\log_(5)(25)\), y con \(\log_(9)(81)\), etc. Es decir, resulta

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Por lo tanto, si lo necesitamos, podemos escribir dos como un logaritmo con cualquier base en cualquier lugar (ya sea en una ecuación, en una expresión o en una desigualdad); simplemente escribimos la base al cuadrado como argumento.

Lo mismo ocurre con el triple: se puede escribir como \(\log_(2)(8)\), o como \(\log_(3)(27)\), o como \(\log_(4)( 64) \)... Aquí escribimos la base en el cubo como argumento:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Y con cuatro:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Y con menos uno:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

Y con un tercio:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Cualquier número \(a\) se puede representar como un logaritmo con base \(b\): \(a=\log_(b)(b^(a))\)

Ejemplo : Encuentra el significado de la expresión. \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Solución :

Respuesta : \(1\)

En relación a

Se puede establecer la tarea de encontrar cualquiera de los tres números a partir de los otros dos dados. Si se dan a y luego N, se encuentran mediante exponenciación. Si N y entonces a se dan tomando la raíz del grado x (o elevando a la potencia). Consideremos ahora el caso en el que, dados a y N, necesitamos encontrar x.

Sea positivo el número N: sea positivo el número a y distinto de uno: .

Definición. El logaritmo del número N en base a es el exponente al que se debe elevar a para obtener el número N; el logaritmo se denota por

Así, en la igualdad (26.1) el exponente se encuentra como el logaritmo de N en base a. Publicaciones

tienen el mismo significado. La igualdad (26.1) a veces se considera la identidad principal de la teoría de los logaritmos; en realidad expresa la definición del concepto de logaritmo. Según esta definición, la base del logaritmo a es siempre positiva y diferente de la unidad; el número logarítmico N es positivo. Los números negativos y el cero no tienen logaritmos. Se puede demostrar que cualquier número con una base determinada tiene un logaritmo bien definido. Por tanto, la igualdad implica. Tenga en cuenta que la condición es esencial aquí; de lo contrario, la conclusión no estaría justificada, ya que la igualdad es verdadera para cualquier valor de x e y.

Ejemplo 1. Encontrar

Solución. Para obtener un número, debes elevar la base 2 a la potencia Por tanto.

Puede tomar notas al resolver dichos ejemplos de la siguiente forma:

Ejemplo 2. Encuentra .

Solución. Tenemos

En los ejemplos 1 y 2, encontramos fácilmente el logaritmo deseado representando el número del logaritmo como una potencia de la base con un exponente racional. En el caso general, por ejemplo, etc., esto no se puede hacer, ya que el logaritmo tiene un valor irracional. Prestemos atención a una cuestión relacionada con esta afirmación. En el párrafo 12, dimos el concepto de la posibilidad de determinar cualquier potencia real de un número positivo dado. Esto fue necesario para la introducción de los logaritmos, que, en general, pueden ser números irracionales.

Veamos algunas propiedades de los logaritmos.

Propiedad 1. Si el número y la base son iguales, entonces el logaritmo es igual a uno y, a la inversa, si el logaritmo es igual a uno, entonces el número y la base son iguales.

Prueba. Dejemos que por la definición de logaritmo tenemos y de donde

Por el contrario, dejemos entonces por definición

Propiedad 2. El logaritmo de uno con cualquier base es igual a cero.

Prueba. Por definición de logaritmo (la potencia cero de cualquier base positiva es igual a uno, ver (10.1)). De aquí

Q.E.D.

La afirmación inversa también es cierta: si , entonces N = 1. De hecho, tenemos .

Antes de formular la siguiente propiedad de los logaritmos, aceptemos decir que dos números a y b se encuentran en el mismo lado del tercer número c si ambos son mayores que c o menores que c. Si uno de estos números es mayor que c y el otro es menor que c, entonces diremos que se encuentran en lados opuestos de c.

Propiedad 3. Si el número y la base están en el mismo lado de uno, entonces el logaritmo es positivo; Si el número y la base están en lados opuestos de uno, entonces el logaritmo es negativo.

La prueba de la propiedad 3 se basa en el hecho de que la potencia de a es mayor que uno si la base es mayor que uno y el exponente es positivo o la base es menor que uno y el exponente es negativo. Una potencia es menor que uno si la base es mayor que uno y el exponente es negativo o la base es menor que uno y el exponente es positivo.

Hay cuatro casos para considerar:

Nos limitaremos a analizar el primero de ellos; el lector considerará por su cuenta el resto.

Supongamos entonces que en igualdad el exponente no puede ser negativo ni igual a cero, por lo tanto, es positivo, es decir, como se requiere demostrar.

Ejemplo 3. Descubra cuáles de los siguientes logaritmos son positivos y cuáles son negativos:

Solución, a) ya que el número 15 y la base 12 se encuentran en el mismo lado de uno;

b) ya que 1000 y 2 están ubicados en un lado de la unidad; en este caso no importa que la base sea mayor que el número logarítmico;

c) dado que 3,1 y 0,8 se encuentran en lados opuestos de la unidad;

G); ¿Por qué?

d) ; ¿Por qué?

Las siguientes propiedades 4-6 a menudo se denominan reglas de logaritmación: permiten, conociendo los logaritmos de algunos números, encontrar los logaritmos de su producto, cociente y grado de cada uno de ellos.

Propiedad 4 (regla del logaritmo del producto). El logaritmo del producto de varios números positivos con respecto a una base determinada es igual a la suma de los logaritmos de estos números con respecto a la misma base.

Prueba. Sean positivos los números dados.

Para el logaritmo de su producto, escribimos la igualdad (26.1) que define el logaritmo:

Desde aquí encontraremos

Comparando los exponentes de la primera y la última expresión, obtenemos la igualdad requerida:

Tenga en cuenta que la condición es esencial; el logaritmo del producto de dos números negativos tiene sentido, pero en este caso obtenemos

En general, si el producto de varios factores es positivo, entonces su logaritmo es igual a la suma de los logaritmos de los valores absolutos de estos factores.

Propiedad 5 (regla para tomar logaritmos de cocientes). El logaritmo de un cociente de números positivos es igual a la diferencia entre los logaritmos del dividendo y del divisor, llevados a la misma base. Prueba. Constantemente encontramos

Q.E.D.

Propiedad 6 (regla del logaritmo de potencias). El logaritmo de la potencia de cualquier número positivo es igual al logaritmo de ese número multiplicado por el exponente.

Prueba. Escribamos nuevamente la identidad principal (26.1) del número:

Q.E.D.

Consecuencia. El logaritmo de una raíz de un número positivo es igual al logaritmo del radical dividido por el exponente de la raíz:

La validez de este corolario se puede probar imaginando cómo y utilizando la propiedad 6.

Ejemplo 4. Llevar logaritmo a base a:

a) (se supone que todos los valores b, c, d, e son positivos);

b) (se supone que ).

Solución, a) Conviene ir a potencias fraccionarias en esta expresión:

Con base en las igualdades (26.5)-(26.7) ahora podemos escribir:

Notamos que se realizan operaciones más simples sobre los logaritmos de los números que sobre los números mismos: al multiplicar números se suman sus logaritmos, al dividir se restan, etc.

Es por eso que los logaritmos se utilizan en la práctica informática (ver párrafo 29).

La acción inversa del logaritmo se llama potenciación, a saber: la potenciación es la acción mediante la cual se encuentra el número mismo a partir de un logaritmo dado de un número. En esencia, la potenciación no es una acción especial: se reduce a elevar una base a una potencia (igual al logaritmo de un número). El término "potenciación" puede considerarse sinónimo del término "exponenciación".

Al potenciar, es necesario utilizar las reglas inversas a las reglas de logaritmo: sustituir la suma de logaritmos por el logaritmo del producto, la diferencia de logaritmos por el logaritmo del cociente, etc. En particular, si hay un factor delante del signo del logaritmo, luego durante la potenciación debe transferirse al exponente grados bajo el signo del logaritmo.

Ejemplo 5. Encuentre N si se sabe que

Solución. En relación con la regla de potenciación recién expuesta, transferiremos los factores 2/3 y 1/3 que se encuentran delante de los signos de los logaritmos en el lado derecho de esta igualdad a exponentes bajo los signos de estos logaritmos; obtenemos

Ahora reemplazamos la diferencia de logaritmos por el logaritmo del cociente:

para obtener la última fracción de esta cadena de igualdades, liberamos a la fracción anterior de la irracionalidad en el denominador (cláusula 25).

Propiedad 7. Si la base es mayor que uno, entonces el número mayor tiene un logaritmo mayor (y el menor tiene uno menor), si la base es menor que uno, entonces el número mayor tiene un logaritmo menor (y el menor uno tiene uno más grande).

Esta propiedad también se formula como regla para tomar logaritmos de desigualdades, cuyos lados son positivos:

Cuando se logaritman desigualdades con una base mayor que uno, se conserva el signo de la desigualdad, y cuando se logaritman con una base menor que uno, el signo de la desigualdad cambia al opuesto (ver también el párrafo 80).

La prueba se basa en las propiedades 5 y 3. Considere el caso en el que Si , entonces y, tomando logaritmos, obtenemos

(a y N/M se encuentran en el mismo lado de la unidad). De aquí

El caso a sigue, el lector lo descubrirá por sí solo.

Expresiones logarítmicas, resolución de ejemplos. En este artículo veremos problemas relacionados con la resolución de logaritmos. Las tareas plantean la cuestión de encontrar el significado de una expresión. Cabe señalar que el concepto de logaritmo se utiliza en muchas tareas y comprender su significado es sumamente importante. En cuanto al Examen Estatal Unificado, el logaritmo se utiliza en la resolución de ecuaciones, en problemas aplicados y también en tareas relacionadas con el estudio de funciones.

Pongamos ejemplos para entender el significado mismo del logaritmo:


Identidad logarítmica básica:

Propiedades de los logaritmos que siempre hay que recordar:

*El logaritmo del producto es igual a la suma de los logaritmos de los factores.

* * *

*El logaritmo de un cociente (fracción) es igual a la diferencia entre los logaritmos de los factores.

* * *

*El logaritmo de un exponente es igual al producto del exponente por el logaritmo de su base.

* * *

*Transición a una nueva fundación

* * *

Más propiedades:

* * *

El cálculo de logaritmos está estrechamente relacionado con el uso de propiedades de los exponentes.

Enumeremos algunos de ellos:

La esencia de esta propiedad es que cuando el numerador se transfiere al denominador y viceversa, el signo del exponente cambia al opuesto. Por ejemplo:

Un corolario de esta propiedad:

* * *

Al elevar una potencia a una potencia, la base sigue siendo la misma, pero los exponentes se multiplican.

* * *

Como has visto, el concepto de logaritmo en sí es simple. Lo principal es que necesitas una buena práctica, que te dé cierta habilidad. Por supuesto, se requiere conocimiento de fórmulas. Si no se ha desarrollado la habilidad de convertir logaritmos elementales, al resolver problemas simples es fácil cometer un error.

Practica, resuelve primero los ejemplos más simples del curso de matemáticas y luego pasa a los más complejos. En el futuro definitivamente mostraré cómo se resuelven los logaritmos "feos"; no habrá ninguno de estos en el Examen Estatal Unificado, pero son interesantes, ¡no te lo pierdas!

¡Eso es todo! ¡Buena suerte para ti!

Saludos cordiales, Alexander Krutitskikh

P.D: Le agradecería que me hablara del sitio en las redes sociales.