Меню

Максимальная валентность. Что такое валентность: как определять и как использовать

В помощь хозяйке


Валентность - это способность атома данного элемента образовывать определенное количество химических связей.

Образно говоря, валентность - это число "рук", которыми атом цепляется за другие атомы. Естественно, никаких "рук" у атомов нет; их роль играют т. н. валентные электроны.

Можно сказать иначе: валентность - это способность атома данного элемента присоединять определенное число других атомов.

Необходимо четко усвоить следующие принципы:

Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство).

Элементы с постоянной валентностью необходимо запомнить:


Остальные элементы могут проявлять разную валентность.

Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент.

Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.

Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.

Важно запомнить несколько исключений : максимальная (и единственная) валентность фтора равна I (а не VII), кислорода - II (а не VI), азота - IV (способность азота проявлять валентность V - популярный миф, который встречается даже в некоторых школьных учебниках).

Валентность и степень окисления - это не тождественные понятия.

Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность - нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N 2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.

Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого.

Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента .

В соединении A x B y: валентность (А) x = валентность (В) y


Пример 1 . Найти валентности всех элементов в соединении NH 3 .

Решение . Валентность водорода нам известна - она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).


Пример 2 . Найти валентности всех элементов в молекуле Cl 2 O 5 .

Решение . У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 2 = 2 Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).


Пример 3 . Найти валентность хлора в молекуле SCl 2 , если известно, что валентность серы равна II.

Решение . Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl - элементы с переменной валентностью. С учетом дополнительной информации, решение строится по схеме примеров 1 и 2. Ответ: Cl(I).

Зная валентности двух элементов, можно составить формулу бинарного соединения.

В примерах 1 - 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.

Пример 4 . Составьте формулу соединения кальция с водородом.

Решение . Валентности кальция и водорода известны - II и I соответственно. Пусть формула искомого соединения - Ca x H y . Вновь составляем известное уравнение: 2 x = 1 у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH 2 .

"А почему именно CaH 2 ? - спросите вы. - Ведь варианты Ca 2 H 4 и Ca 4 H 8 и даже Ca 10 H 20 не противоречат нашему правилу!"

Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.

"Значит, соединения типа N 2 O 4 или C 6 H 6 невозможны? - спросите вы. - Следует заменить эти формулы на NO 2 и CH?"

Нет, возможны. Более того, N 2 O 4 и NO 2 - это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С 6 Н 6).

Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.


Пример 5 . Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.

Решение . Пусть формула соединения - S x F y . Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 x = 1 y. Несложно понять, что наименьшие возможные значения переменных - это 1 и 6. Ответ: SF 6 .

Вот, собственно, и все основные моменты.

А теперь проверьте себя! Предлагаю пройти небольшой тест по теме "Валентность" .

Из материалов урока вы узнаете, что постоянство состава вещества объясняется наличием у атомов химических элементов определенных валентных возможностей; познакомитесь с понятием «валентность атомов химических элементов»; научитесь определять валентность элемента по формуле вещества, если известна валентность другого элемента.

Тема: Первоначальные химические представления

Урок: Валентность химических элементов

Состав большинства веществ постоянен. Например, молекула воды всегда содержит 2 атома водорода и 1 атом кислорода – Н 2 О. Возникает вопрос: почему вещества имеют постоянный состав?

Проанализируем состав предложенных веществ: Н 2 О, NaH, NH 3 , CH 4 , HCl. Все они состоят из атомов двух химических элементов, один из которых водород. На один атом химического элемента может приходиться 1,2,3,4 атома водорода. Но ни в одном веществе не будет на один атом водорода приходиться несколько атомов другого химического элемента. Таким образом, атом водорода может присоединять к себе минимальное количество атомов другого элемента, а точнее, только один.

Свойство атомов химического элемента присоединять к себе определенное число атомов других элементов называется валентностью.

Некоторые химические элементы имеют постоянные значения валентности (например, водород(I) и кислород(II)), другие могут проявлять несколько значений валентности (например, железо(II,III), сера(II,IV,VI), углерод(II,IV)), их называют элементами с переменной валентностью . Значения валентности некоторых химических элементов приведены в учебнике.

Зная валентности химических элементов, можно объяснить, почему вещество имеет именно такую химическую формулу. Например, формула воды H 2 O. Обозначим валентные возможности химического элемента с помощью черточек. Водород имеет валентность I, а кислород – II: Н- и -О-. Каждый атом может полностью использовать свои валентные возможности, если на один атом кислорода будет приходиться два атома водорода. Последовательность соединения атомов в молекуле воды можно представить в виде формулы: Н-О-Н.

Формула, в которой показана последовательность соединения атомов в молекуле, называется графической (или структурной ).

Рис. 1. Графическая формула воды

Зная формулу вещества, состоящего из атомов двух химических элементов, и валентность одного из них, можно определить валентность другого элемента.

Пример 1. Определим валентность углерода в веществе СН 4 . Зная, что валентность водорода всегда равна I, а углерод присоединил к себе 4 атома водорода, можно утверждать, что валентность углерода равна IV. Валентность атомов обозначается римской цифрой над знаком элемента: .

Пример 2. Определим валентность фосфорав соединении Р 2 О 5 . Для этого необходимо выполнить следующие действия:

1. над знаком кислорода записать значение его валентности – II (кислород имеет постоянное значение валентности);

2. умножив валентность кислорода на число атомов кислорода в молекуле, найти общее число единиц валентности – 2·5=10;

3. разделить полученное общее число единиц валентностей на число атомов фосфора в молекуле – 10:2=5.

Таким образом, валентность фосфора в данном соединении равна V – .

1. Емельянова Е.О., Иодко А.Г. Организация познавательной деятельности учащихся на уроках химии в 8-9 классах. Опорные конспекты с практическими заданиями, тестами: Часть I. – М.: Школьная Пресса, 2002. (с.33)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 36-38)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§16)

4. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§§11,12)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. с.84 № 2 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 37-38 №№ 2,4,5,6 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

При рассмотрении химических элементов можно заметить, что количество атомов у одного и того же элемента в разных веществах разнится. Каким же образом правильно записать формулу и не ошибиться в индексе химического элемента? Это легко сделать, если иметь представление, что такое валентность.

Для чего нужна валентность?

Валентность химических элементов – это способность атомов элемента образовывать химические связи, то есть присоединять к себе другие атомы. Количественной мерой валентности является число связей, которые образует данный атом с другими атомами или атомными группами.

В настоящее время валентность представляет собой число ковалентных связей (в том числе возникших и по донорно-акцепторному механизму), которыми данный атом соединен с другими. При этом не учитывается полярность связей, а значит, валентность не имеет знака и не может быть равной нулю.

Ковалентная химическая связь – это связь, осуществляемая за счет образования общих (связывающих) электронных пар. Если между двумя атомами имеется одна общая электронная пара, то такая связь называется одинарной, если две – двойной, если три – тройной.

Как находить валентность?

Первый вопрос, который волнует учеников 8 класса, начавших изучать химию – как определить валентность химических элементов? Валентность химического элемента можно посмотреть в специальной таблице валентности химических элементов

Рис. 1. Таблица валентности химических элементов

Валентность водорода принята за единицу, так как атом водорода может образовывать с другими атомами одну связь. Валентность других элементов выражаем числом, которое показывает, сколько атомов водорода может присоединить к себе атом данного элемента. Например, валентность хлора в молекуле хлористого водорода равна единице. Следовательно формула хлористого водорода будет выглядеть так: HCl. Так как и у хлора и у водорода валентность равна единице, никакой индекс не используется. И хлор и водород являются одновалентными, так как одному атому водорода соответствует один атом хлора.

Рассмотрим другой пример: валентность углерода в метане равна четырем, валентность водорода – всегда единица. Следовательно, рядом с водородом следует поставить индекс 4. Таким образом формула метана выглядит так: CH 4 .

Очень многие элементы образуют соединения с кислородом. Кислород всегда является двухвалентным. Поэтому в формуле воды H 2 O, где встречаются всегда одновалентный водород и двухвалентный кислород, рядом с водородом ставится индекс 2. Это значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода.

Рис. 2. Графическая формула воды

Не все химические элементы имеют постоянную валентность, у некоторых она может изменяться в зависимости от соединений, где используется данный элемент. К элементам с постоянной валентностью относятся водород и кислород, к элементам с переменной валентностью относятся, например, железо, сера, углерод.

Как определить валентность по формуле?

Если у вас перед глазами нет таблицы валентности, но есть формула химического соединения, то возможно определение валентности по формуле. Возьмем для примера формулу оксид марганца – Mn 2 O 7

Рис. 3. Оксид марганца

Как известно, кислород является двухвалентным. Чтобы выяснить, какой валентностью обладает марганец, необходимо валентность кислорода умножить на число атомов газа в этом соединении:

Получившееся число делим на количество атомов марганца в соединении. Получается:

Средняя оценка: 4.5 . Всего получено оценок: 923.

Инструкция

Для примера можно использовать два вещества – HCl и H2O. Это хорошо известные всем и вода. В первом веществе содержится один атом водорода (H) и один атом хлора (Cl). Это говорит о том, в данном соединении они образуют одну , то есть удерживают возле себя один атом. Следовательно, валентность и одного, и другого равна 1. Так же просто определить валентность элементов, составляющих молекулу воды. Она содержит два водорода и один атом кислорода. Следовательно, атом кислорода образовал две связи для присоединения двух водородов, а они, в свою очередь, по одной связи. Значит, валентность кислорода равна 2, а водорода – 1.

Но иногда приходится сталкиваться с вещества ми более сложными по и свойствам составляющих их атомов. Существует два типа элементов: с постоянной ( , водород и др.) и непостоянной валентность ю. У атомов второго типа это число зависит от соединения, в состав которого они входят. В качестве примера можно привести (S). Она может иметь валентности 2, 4, 6 и иногда даже 8. Определить способность таких элементов, как сера, удерживать вокруг себя другие атомы, немного сложнее. Для этого необходимо знать других составляющих вещества .

Запомните правило: произведение количества атомов на валентность одного элемента в соединении должна совпадать с таким же произведением для другого элемента. Это можно проверить вновь обратившись к молекуле воды (H2O):
2 (количество водорода) * 1 (его валентность ) = 2
1 (количество кислорода) * 2 (его валентность ) = 2
2 = 2 – значит все определено верно.

Теперь проверьте этот алгоритм на более сложном веществе, например, N2O5 – оксиде . Ранее указывалось, что кислород имеет постоянную валентность 2, поэтому можно составить :
2 (валентность кислорода) * 5 (его количество) = Х (неизвестная валентность азота) * 2 (его количество)
Путем несложных арифметических вычислений можно определить, что валентность азота в данного соединения равна 5.

Валентность - это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто.

Инструкция

Примите к сведению, что валентность атомов одних элементов постоянна, а других - переменна, то есть, имеет свойство меняться. Например, водород во всех соединениях одновалентен, поскольку образует только одну . Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера - элемент с переменной валентностью.

Заметьте, что в молекулах водородных соединений вычислить валентность очень просто. Водород всегда одновалентен, а этот показатель у связанного с ним элемента будет равняться количеству атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.

Запомните главное правило определения валентности: произведение показателя валентности атома какого-либо элемента и количества его атомов в какой-либо молекуле произведению показателя валентности атома второго элемента и количества его атомов в данной молекуле.

Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V - это валентность атомов элементов, а К - количество атомов в молекуле. С ее помощью легко определить показатель валентности любого элемента, если известны остальные данные.

Рассмотрите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, поэтому, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.

Видео по теме

Валентность – один из основных терминов, употребляемых в теории химического строения. Это понятие определяет способность атома образовывать химические связи и количественно представляет собой число связей, в которых он участвует.

Инструкция

Валентность (от лат. valentia – «сила») – показатель способности атома присоединять к себе другие атомы, образуя с ними химические связи внутри молекулы. Общее число связей, в которых может участвовать атом, равняется числу его неспаренных электронов. Такие связи называются ковалентными.

Неспаренные электроны – это свободные электроны внешней оболочки атома, которые соединяются в пары с внешними электронами другого атома. При этом каждая такая пара называется электронной, а такие электроны – валентными. Исходя из этого, валентности может звучать так: это число электронных пар, по которым данный атом связан с другими атомами.

Максимальный показатель валентности химических элементов одной группы периодической системы, как правило, равен порядковому номеру группы. В различных атомы одного элемента могут иметь разную валентность. Полярность образующихся не учитывается, поэтому валентность не имеет знака. Она не может быть ни нулевой, ни отрицательной величиной.

Количественной любого химического элемента принято считать число одновалентных атомов водорода или двухвалентных атомов кислорода. Однако при определении валентности можно использовать и другие элементы, валентность которых точно известна.

Иногда понятие валентности отождествляют с понятием «степень окисления», однако это неверно, хотя в некоторых случаях эти показатели совпадают. Степень окисления – формальный термин, означающий возможный заряд, который получил бы атом, если бы его электроны в электронных перешли к более электроотрицательным атомам. При этом степень окисления выражается в единицах заряда и может иметь знак, в отличие от валентности. Этот термин получил распространение в неорганической , поскольку в неорганических соединениях судить о валентности. Валентность же используется в органической химии, поскольку большинство органических соединений имеет молекулярное строение.

Видео по теме

Это способность атома вступать во взаимодействие с другими атомами, образуя с ними химические связи. В создание теории валентности внесли большой вклад многие ученые, прежде всего, немец Кекуле и наш соотечественник Бутлеров. Электроны , которые принимают участие в образовании химической связи, называют валентными.

Вам понадобится

  • Таблица Менделеева.

Инструкция

Вспомните атома. Он нашей Солнечной системе: в центре располагается массивное ядро («звезда»), а вокруг него вращаются электроны (« »). Размеры ядра, хотя в нем сосредоточена практически вся масса атома, ничтожно малы по сравнению с расстояние до электронных орбит. Какие из электронов атома легче всего вступят во взаимодействия с электронами других атомов? Нетрудно понять, что те, которые находятся дальше всего от ядра, на внешней электронной оболочке.

Существует несколько определений понятия «валентность». Чаще всего этим термином называют способность атомов одного элемента присоединять определённое число атомов других элементов. Часто у тех, кто только начинает изучать химию, возникает вопрос: Как определить валентность элемента?. Сделать это несложно, зная несколько правил.

Валентности постоянные и переменные

Рассмотрим соединения HF, H2S и CaH2. В каждом из этих примеров один атом водорода присоединяет к себе только один атом другого химического элемента, значит его валентность равна одному. Значение валентности записывают над символом химического элемента римскими цифрами.

В приведённом примере атом фтора связан только с одним одновалентным атомом H, значит валентность его тоже равна 1. Атом серы в H2S присоединяет к себе уже два атома H, поэтому она в данном соединении двухвалентна. С двумя водородными атомами связан и кальций в его гидриде CaH2, а значит, и его валентность равна двум.

Кислород в подавляющем большинстве своих соединений двухвалентен, то есть образует две химические связи с другими атомами.

Атом серы в первом случае присоединяет к себе два кислородных атома, то есть всего образует 4 химические связи (один кислород образует две связи, значит сера — два раза по 2), то есть валентность ее равна 4.

В соединении SO3 сера присоединяет уже три атома O, поэтому и валентность ее равна 6 (три раза образует по две связи с каждым атомом кислорода). Атом кальция же присоединяет только один атом кислорода, образуя с ним две связи, значит, его валентность такая же, как и у O, то есть равна 2.

Обратите внимание на то, что атом H одновалентен в любом соединении. Всегда (кроме иона гидроксония H3O(+)) равна 2 валентность кислорода. По две химические связи как с водородом, так и с кислородом образует кальций. Это элементы с постоянной валентностью. Кроме уже указанных, постоянную валентность имеют:

  • Li, Na, K, F — одновалентны;
  • Be, Mg, Ca, Zn, Cd — обладают валентностью, равной II;
  • B, Al и Ga — трехвалентны.

Атом серы, в отличие от рассмотренных случаев, в соединении с водородом имеет валентность, равную II, а с кислородом может быть и четырех- и шестивалентна. Про атомы таких элементов говорят, что они имеют переменную валентность. При этом максимальное ее значение в большинстве случаев совпадает с номером группы, в которой находится элемент в Периодической системе (правило 1).

Из этого правила есть много исключений. Так, элемент 1 группы медь, проявляет валентности и I, и II. Железо, кобальт, никель, азот, фтор, напротив, имеют максимальную валентность, меньшую, чем номер группы. Так, для Fe, Co, Ni это II и III, для N — IV, а для фтора — I.

Минимальное значение валентности всегда соответствует разнице между числом 8 и номером группы (правило 2).

Однозначно определить, какова же валентность элементов, у которых она переменная, можно только по формуле определенного вещества.

Определение валентности в бинарном соединении

Рассмотрим, как определить валентность элемента в бинарном (из двух элементов) соединении. Здесь возможны два варианта: в соединении валентность атомов одного элемента известна точно или же обе частицы с переменной валентностью.

Случай первый:

Случай второй:

Определение валентности по формуле трехэлементной частицы.

Далеко не все химические вещества состоят из двухатомных молекул. Как определить валентность элемента в трёхэлементной частице? Рассмотрим этот вопрос на примере формул двух соединения K2Cr2O7.

Если же вместо калия в формуле будет присутствовать железо, или другой элемент с переменной валентностью, нам потребуется знать, какова же валентность кислотного остатка. Например, нужно вычислить валентности атомов всех элементов в соединении с формулой FeSO4.

Следует отметить, что термин «валентность» чаще использую в органической химии. При составлении формул неорганических соединений чаще используют понятие «степень окисления».