Меню

Виды освещения: преимущества и недостатки. Каким бывает освещение – искусственное или естественное? Виды освещения их преимущества и недостатки

Водоснабжение, варианты, устройство

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т.д.). Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев аварий.

По функциональному назначению искусственное освещение подразделяется на рабочее , дежурное , аварийное .

Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта.

Дежурное освещение включается во вне рабочее время.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Осветительные приборы составляют самую многочисленную группу электроприборов в каждом доме. Источники света являются важным элементом быта.

Источники искусственного освещения. Их достоинства и недостатки

Все современные лампы можно классифицировать по трем основным признакам: это тип цоколя, способ получения света и напряжение, от которого они работают. Начнем с самого главного - способа получения светового потока. Именно от него в полной мере зависит способность лампы потреблять определенное количество электрической энергии. Рассмотрим подробнее некоторые особенности этих ламп освещения.

Лампы накаливания

Лампы накаливания (рис. 1) относятся к классу тепловых источников света. Несмотря на внедрение более технологичных видов ламп, остаются одними из самых массовых и дешевых источников света, особенно в бытовом секторе.

Действие этих ламп основано на нагревании спирали проходящим через нее током до температуры 3000 градусов. Колбы ламп мощностью от 40 Вт и более наполнены инертными газами - аргоном или криптоном. Бытовые лампы бывают мощностью 25 - 150 Ватт. Лампы мощностью до 60 Ватт с уменьшенным цоколем называются миньонами. Проверить исправность лампы можно тестером, спираль должна иметь определенное сопротивление. У светильника с лампой накаливания возможно всего две неисправности: 1. Перегорелалампа 2. Отсутствует контакт в электропроводке, в результате чего на цоколь не подается напряжение.

Достоинства : Просты по конструкции, надежны, не имеют дополнительных устройств при включении, практически не зависят от температуры окружающей среды, мгновенно зажигаются.

Недостатки : Имеют не очень большой срок службы, около 1000 часов.

Лампы люминесцентные

Люминесцентные лампы (рис. 2) относятся к газоразрядным лампам низкого давления. Могут быть различной формы: прямые, трубчатые, фигурные и компактные (КЛЛ). Диаметр трубки не связан с мощностью лампы, которая может достигать до 200 Вт. Трубчатые лампы имеют двухштырьковые типы цоколей в зависимости от расстояния между штырьками: G-13 (расстояние - 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние - 5 мм) для ламп диаметром 16 мм.

Компактная люминисцентная лампа (КЛЛ) (рис. 3) - люминесцентная лампа, которая имеет изогнутую форму колбы, что позволяет разместить ее в светильнике небольших размеров. Такие лампы могут иметь встроенный электронный дроссель (ЭПРА), могут быть разной формы и разной длины. Применяются либо в специальных типах светильников либо для замены ламп накаливания в обычных типах светильников (лампы мощностью до 20Вт, которые вкручиваются в резьбовой патрон или через адаптер).

Люминесцентные лампы требуют работы специального устройства - пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование люминисцентных ламп, означают:

Л - люминесцентная, Б - белая, ТБ - тепло-белая, Д - дневная, Ц - с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 - лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Светильник с люминесцентными лампами работает следующим образом (рис. 4) - трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды, ток, текущий через дроссель и стартер значительно увеличивается, нагревает биметаллическую пластину стартера, электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение, его накопленной энергии хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе. Пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека. Дроссель почти не потребляет энергию, энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода, чтобы разгрузить сеть используется конденсатор С. Обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора понижает КПД лампы, без него КПД 50-60%, с ним - 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Типовые неисправности светильников с люминесцентными лампами

Неисправность

Способ устранения

Срабатывает защита при включении светильника

1. Пробой компенсирующего конденсатора (от радиопомех) на входе светильника.

2. Замыкание в цепи за автоматом.

1. Заменить конденсатор.

2. Проверить напряжение на контактах патронов и стартера.

3. Заменить лампу на исправную.

4. Проверить целостность спиралей лампы.

Лампа не зажигается.

На патроне светильника со стороны питающей сети нет напряжения, низкое напряжение сети.

Проверить индикатором или тестером наличие и значение напряжения питания.

Лампа не зажигается, на концах лампы нет свечения.

1. Плохой контакт между штырьками лампы и контактами патрона или между штырьками стартера и контактами держателя стартера.

2. Неисправность лампы, обрыв или перегорание спиралей.

3. Неисправность стартера - стартер не замыкает цепь накала электродов лампы.

4. Неисправность в электрической схеме светильника.

5. Неисправен дроссель.

1. Пошевелить в стороны лампу и стартер.

2. Установить заведомо исправную лампу.

3. Если отсутствует свечение в стартере, заменить стартер.

4. Проверить все соединения в электрической схеме.

5. Если обрыва проводов, нарушения контактных соединений и ошибок в электрической схеме не обнаружено, то, неисправен дроссель.

Лампа не зажигается, концы лампы светятся.

Неисправен стартер.

Заменить стартер.

Лампа мигает, но не зажигается, имеется свечение на одном конце.

1. Ошибки в электрической схеме.

2. Замыкание в электрической цепи или патроне, которое может закорачивать лампу.

3. Замыкание выводов электродов лампы.

1. Лампы вынуть и вставить, поменять местами концы. Если светится ранее несветящийся электрод, то лампа исправна.

2. Если свечение отсутствует на том же конце лампы, проверить, есть ли замыкание в патроне со стороны несветящегося электрода.

3. Если замыкание не обнаружено, проверить схему соединений.

4. Заменить лампу

Лампа не мигает и не зажигается, свечение имеется на обоих концах электродов.

1. Ошибка в электрической схеме.

2. Неисправность стартера (пробой конденсатора для подавления радиопомех или залипание контактов стартера).

Заменить стартер.

Лампа мигает и не зажигается

1. Неисправен стартер.

2. Ошибки в электрической схеме.

3. Низкое напряжение сети.

1. Проверить тестером напряжение сети.

2. Заменить стартер.

3. Заменить лампу.

При включении лампы на ее концах наблюдается оранжевое свечение, через некоторое время свечение исчезает и лампа не зажигается.

Неисправна лампа, в лампу попал воздух

Необходимо заменить лампу

Лампа попеременно зажигается и гаснет

Неисправность лампы

1. Необходимо заменить лампу.

2. Если мигание продолжается, то заменить стартер.

При включении лампы перегорают спирали ее электродов.

1. Неисправность дросселя (нарушена изоляция или межвитковое замыкание в обмотке).

2. В электрической схеме имеется замыкание на корпус.

1. Проверить электрическую схему.

2. Проверить изоляцию проводов.

3. Проверить в электрической схеме замыкание на корпус светильника

Лампа зажигается, но через несколько часов работы появляется почернение ее концов.

1. Замыкание на корпус светильника в электрической схеме.

2. Неисправность дросселя.

1. Проверить замыкание на корпус, проверить изоляцию проводки.

2. Тестером проверить величину пускового и рабочего тока, если эти величины превосходят нормальные значения, заменить дроссель.

Лампа зажигается, при ее горении начинается вращение разрядного шнура и проявляются перемещающиеся спиральные и змеевидные полосы

1. Неисправна лампа.

2. Сильные колебания напряжения сети.

3. Плохой контакт в соединениях.

4. Лампа охватывает магнитные силовые линии рассеяния дросселя.

1. Необходимо заменить лампу.

2. Проверить напряжение сети.

3. Проверить контактные соединения.

4. Заменить дроссель.

Достоинства : По сравнению с лампами накаливания экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где лампа включена много часов.

Недостатки : При температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Газоразрядные лампы ДРЛ

Лампы ДРЛ (дуговые ртутные с люминофором (Рис. 5,6), это разрядные лампы высокого давления. Благодаря дополнительным электродам и резисторам, размещенным в колбе, лампа не нуждается в зажигающем устройстве, включается в сеть с индуктивным ПРА и зажигается непосредственно от напряжения 220 Вольт, конденсатор необходим для уменьшения силы тока.

После включения лампы она зажигается, световой поток, создаваемый лампой, постепенно увеличивается, процесс разгорания длится 7 - 10 минут. При исчезновении напряжения лампа гаснет. Горячую лампу зажечь невозможно, необходимо ее полное остывание, после выключения ее можно повторно зажечь лишь через 10-15 минут. Бывают мощностью от 80 до 250 Ватт.

Ремонт светильников с лампами ДРЛ заключается в выявлении вышедшего из строя элемента и замене его на заведомо исправный.

Достоинства : значительно экономичнее ламп накаливания, нечувствительны к изменениям температуры, поэтому их удобно использовать при освещении на улице, срок службы до 15000 часов.

Недостатки : низкая цветопередача, пульсация светового потока, чувствительность к колебаниям напряжения в сети.

Галогенные лампы

Галогенные лампы накаливания (рис. 7) относятся к классу тепловых источников света, световое излучение которых является следствием нагрева спирали лампы проходящим через него током. Наполнена газовой смесью, в состав которой входят галогены (обычно йод или бром). Это придает свету яркость, насыщенность, и их можно применять в точечных источниках света.

Лучше применять лампы известных фирм - галогенные лампы излучают ультрафиолетовые лучи, что вредно для глаз. В лампах известных фирм есть специальное, не пропускающее ультрафиолет покрытие.

При возникновении неисправности измерить напряжение на цоколе светильника, если напряжение в норме - заменить лампу. Если напряжения на цоколе светильника нет - неисправность в трансформаторе или в контактной части электротехнической арматуры.

Достоинства : Срок службы 1500-2000 часов, обладают стабильностью светового потока в течении всего срока службы, меньшие размеры колбы по сравнению с лампами накаливания. При одинаковой с лампой накаливания мощности световая отдача в 1,5-2 раза больше.

Недостатки : Нежелательны изменения напряжения сети, при снижении напряжения уменьшается температура спирали и снижается срок службы лампы.

Энергосберегающие лампы

Энергосберегающие лампы (рис. 8) предназначены для эксплуатации в осветительных приборах жилых, офисных, коммерческих, административных и промышленных помещений, в декоративных осветительных установках.

Их можно использовать в любом светильнике в качестве заменителя ламп накаливания. Энергосберегающие лампы представляют собой разновидность газоразрядных ламп низкого давления, а именно компактных люминесцентных ламп (КЛЛ).

Мощность энергосберегающих ламп примерно в пять раз меньше, чем у ламп накаливания. Поэтому рекомендуется выбирать мощность энергосберегающих ламп исходя из соотношения 1:5 к лампам накаливания.

Основными параметрами таких ламп являются цветовая температура, размер цоколя и коэффициент цветопередачи. Цветовая температура определяет цвет свечения энергосберегающей лампы. Выражается по шкале Кельвина. Чем ниже температура, тем цвет свечения ближе к красному.

Энергосберегающие лампы имеют различные цвета свечения - белый теплый свет, холодный белый, дневной свет. Рекомендуется выбирать нужный цвет, исходя из интерьера квартиры или дома и особенностей зрения людей, которые там находятся. Холодный белый свет имеет обозначение 6400К. Такое освещение ярко-белое и лучше подходит для офисных помещений. Естественный белый свет имеет обозначение обозначением 4200К и близок к естественому освещению. Такой цвет может подойти для детской комнаты и гостинной. Белый теплый свет - немного желтоватый и имеет обозначение 2700К. Он наиболее близок к лампе накаливания, лучше подходит для отдыха, может использоваться на кухне и в спальне. Большинство людей для квартиры выбирает теплый цвет.

Если в энергосберегающей лампе появляются мерцания, то это говорит о неисправности устройства, лампа либо слабо вкручена, либо неисправна и подлежит замене.

Достоинства : Служат в 8 раз дольше, чем обычные лампы накаливания, на 80% меньше потребляют электроэнергии, дают в 5 раз больше света при равном потреблении энергии, могут работать в постоянном режиме в местах, где требуется освещение на протяжении всех суток, менее чувствительны к тряске и вибрациям, слабо нагреваются, не гудят и не мерцают.

Недостатки : Медленно разогреваются (около двух минут), нельзя использовать в открытых уличных светильниках (не работают при температуре ниже 15 градусов С), нельзя использовать с регуляторами освещенности (диммерами) и датчиками движения.

Светодиодные лампы.

Светодиодные лампы (рис. 9) являются еще одним источником света нового поколения.

В качестве источника света в таких лампах служат светодиоды. Светодиод излучает свет при прохождении через него электрического тока.

Светодиодные лампы основного освещения состоят из: рассеивателя, светодиода или набора светодиодов, корпуса, радиатора охлаждения, блока питания, цоколя. Большое значение имеет радиатор охлаждения, так как светодиоды и блок питания греются. Если радиатор маленький или некачественно сделан, то такие лампы быстрее выходят из строя (обычно выходит из строя блок питания). Блок питания преобразует переменное напряжение 220В в постоянный ток для питания светодиодов.

Выпускаются под патроны GU5.3, GU10, E14, E27. Предлагаются лампы мягкого теплого света (2600-3500К), нейтрального белого (3700-4200К) и холодного белого (5500-6500K). Есть светодиодные лампы с управляемой яркостью (с помощью диммера для ламп накаливания), но они стоят дороже.

Достоинства : Экономичность (затраты на электроэнергию по сравнению с лампами накаливания меньше в 10 раз), большой срок службы (20000 часов и выше), при производстве используютя безопасные компоненты (не содержат ртути), устойчивы к скачкам напряжения, не требуют разогрева (в отличие от энергосберегающих ламп).

Недостатки : Довольно высокая цена, светодиоды постепенно теряют яркость, не могут работать при температуре выше 100 градусов С (жарочные шкафы и т.д.).

Естественное освещение создается источниками света природного характера. Его характеристики, прежде всего, зависят от времени суток, но так же определяются и географическим положением местности, временем года и состоянием атмосферы.

Естественное освещение является для человека физиологически необходимым и наиболее благоприятным. Однако оно не может в полной мере обеспечить его нормальную жизнедеятельность. Из-за этого еще в древности люди начали искать к нему дополнение – искусственное освещение.

Сегодня в качестве источников искусственного освещения, как правило, выступают лампы накаливания, люминесцентные лампы или источники света, использующие светодиоды.

Виды искусственного освещения

Искусственное освещение делится на несколько разновидностей. Существует четыре вида искусственного освещения . Обычно три из них устанавливаются в жилых помещениях, четвертое встречается реже.

1. Общее

При общем освещении происходит равномерное распределение света по всей площади. Это достигается соблюдением одинакового расстояния между светильниками, которые равномерно рассеянны.

При источнике света, локализованном в одной точке, будет наблюдаться разница в яркости света, но резкие перепады будут отсутствовать. Примером может послужить расположенная посередине потолка люстра.

2. Местное

Чтобы выделить необходимые объекты или зоны используют местное освещение. Источник света при этом располагают на определенном участке: кухонной плите, рабочем столе или части стены.

По словам дизайнеров, местное освещение играет важную роль в оформлении интерьера. Оно придает ему полноту и логическую завершенность. Например, в кабинете или спальне можно вообще использовать только одно местное освещение, полностью отказавшись от общего.

Перечисленные выше имеют свои недостатки. Так, общее освещение исключает возможность изменения направления основного светового потока, а так же имеет чрезмерную рассеянность света.

Местное освещение наоборот позволяет выделить только конкретный участок комнаты, который ярко освещается локализованным источником света.

3. Комбинированное

Устранить все эти недостатки можно, совместив местный и общий свет вместе. Таким образом, будет решена проблема освещенности современного жилища. Именно поэтому, комбинированное освещение, которое совмещает в себе два предыдущих вида, наиболее часто применяемый вариант.

4. Аварийное

Описанные выше применяются в жилых помещениях. Четвертый вид освещения – аварийное. К сожалению, его не всегда можно встретить в жилых помещениях.

Питание источников света данного вида освещения происходит от аккумуляторов. Дополнительные лампы слабой мощности автоматически включаются, когда происходит отключение основного источника.

Аварийное освещение является необходимым в помещениях, где отключение света может стать причиной получения серьезных травм.

Простейшим примером являются дома с лестницами, в которых при отсутствии освещения легко упасть. А аварийные светильники, расположенные по бокам ступеней, предохранят жильцов от подобных неприятностей.

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света или для освещения помещения в те часы суток, когда естественный свет отсутствует.

По конструктивному исполнению искусственное освещение может быть двух видов: общее и комбинированное, когда к общему освещению добавляется местное, концентрирующее световой поток непосредственно на рабочих местах. Общее освещение подразделяется на общее равномерное освещение (при равномерном распределении светового потока без учета расположения оборудования) и общее локализованное освещение (при распределении светового потока с учетом расположения рабочих мест).

Комбинированное освещение имеет ряд преимуществ перед общим освещением:

Уменьшается общий расход электрической энергии за счет уменьшения установленной мощности источников света из-за близкого расположения местных светильников к рабочей поверхности;

Происходит экономия электрической энергии за счет выключения светильников местного освещения на свободных рабочих местах;

Повышается видимость рельефных деталей за счет индивидуального выбора местных светильников;

Ограничиваются тени и блики на рабочих местах;

Имеется возможность создания высоких уровней освещенностина наклонных поверхностях.

Применение одного местного освещения внутри зданий не допускается. В промышленных предприятиях рекомендуется применять систему комбинированного освещения там, где выполняются точные зрительные работы, где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально. Система общего освещения может быть рекомендована в помещениях, где по всей площади выполняются однотипные работы, а также в административно-конторских, складских помещениях и проходных. Если рабочие места сосредоточены на отдельных участках, например, у разметочных плит, столов ОТК, целесообразно прибегать к локализованному размещению светильников общего освещения.

Искусственное освещение устраняет перечисленные выше недостатки естественного освещения и обеспечивает оптимальный световой режим.

Искусственное освещение подразделяется на рабочее, аварийное, охранное и дежурное.

Рабочее освещение является обязательным для всех помещений, зданий, а также участков открытых пространств. Оно служит для обеспечения нормальных условий работы, прохода людей, проезда транспорта.

Аварийное освещение разделяется, в своюочередь, на освещение безопасности и эвакуационное.

Освещение безопасности предусматривают в тех случаях, когда отключение рабочего освещения и связанное с этим нарушение обслуживания оборудования и механизмов может вызвать:

Взрыв, пожар, отравление людей;


Длительное нарушение технологического процесса;

Нарушение работы таких объектов, как электрические станции, узлы радио- и телевизионных передач и связи, диспетчерские пункты, насосные установки водоснабжения, канализации и теплофикации, установки вентиляции и кондиционирования воздуха для производственных помещений, в которых недопустимо прекращение работ, и т.п.;

Нарушение режима детских учреждений независимо от числа находящихся в них детей.

Эвакуационное освещение в помещениях или местах проведения работ вне зданий следует предусматривать:

В местах, опасных для прохода людей;

В проходах и на лестницах, служащих для эвакуации людей (есличисло эвакуируемых более 50 человек);

По основным проходам производственных помещений, в которых работают более 50 человек;

На лестничных клетках жилых зданий высотой шесть этажей и более;

В производственных помещениях без естественного света и т.п.

Источники света аварийного освещения могут включаться одновременно со светильниками основного освещения и постоянно гореть или включаться автоматически только при прекращении питания нормального освещения.

Охранное освещение (при отсутствии специальных технических средств охраны) предусматривается вдоль границ территорий, охраняемых в ночное время.

Дежурное освещение - освещение помещений в нерабочее время. При необходимости часть светильников рабочего или аварийного освещения может использоваться для дежурного освещения

Для искусственного освещения рабочих зон электрическим светом используется прямой, отраженный и рассеянный свет (рис. 4.4).

Рис. 4.4. Виды светильников в зависимости от доли светового потока, приходящейся на нижнюю полусферу:

П - прямого света; Р - рассеянного света; О - отраженного света

Выбор тех или иных светильников по светораспределению зависит от характера выполняемых в помещении работ, возможности запыления, загрязнения воздушной среды, отражательной способности поверхностей в помещении. Например, светильники рассеянного и отраженного света применяются в таких помещениях, где требуется большая равномерность освещения, когда необходимо смягчить резкость теней или бликов на поверхностях с большим отражением и т.д.

Нормирование параметров искусственного освещения.

Согласно СНиП 23-09-95 нормируемыми параметрами искусственного освещения являются :

Освещенность рабочей поверхности Е, лк;

Показатель ослепленности Р, %;

Коэффициент пульсации освещенности К п ,%.

Освещенность рабочей поверхности - плотность светового потока на освещаемой им поверхности:

, (4.4)

где Ф - плотность светового потока, лм; S - площадь поверхности, освещаемой световым потоком, м 2 .

В качестве нормативной величины освещенности задается ее минимальное значение, при котором выполнение определенной работы не вредит зрению работника. Е мин задается для наиболее темного участка рабочей поверхности. Она устанавливается по характеристике зрительной работы, которая определяется зрительным напряжением при выполнении данной работы.

Всего выделяют восемь разрядов зрительных работ. Первые шесть разрядов (от работ очень высокой точности до грубых зрительных работ) классифицируются в зависимости от наименьшего размера объекта различения (толщина метки на шкале прибора, самая тонкая линия чертежа, трещина в изделии и т.п.), контраста объекта различения с фоном (малый, средний, большой) и характеристики фона (светлый, средний и темный). VII разряд устанавливает требования для работ со светящимися материалами и изделиями в горячих цехах, VIII- для общего наблюдения за ходом работ.

Показатель ослепленности - критерий оценки слепящего действия осветительной установки, определяемый выражением

Р = (S- 1) × 100 % , (4.5)

где S - коэффициент ослепленности, равный отношению пороговых разностей яркости при наличии и отсутствии слепящих источников в поле зрения. В производственных помещениях показатель ослепленности не должен превышать 20-40 % в зависимости от разряда зрительной работы.

При освещении производственных помещений газоразрядными лампами, питаемыми переменным током промышленной частоты (50 Гц), ограничивается глубина пульсации освещенности.

Коэффициент пульсации освещенности - критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током, выражающийся формулой

где Е макс, Е мин - соответственно максимальное и минимальное значения освещенности за период ее колебания, лк; E c р - среднее значение освещенности за этот же период, лк.

Величина коэффициента пульсации в зависимости от системы освещения и характера выполняемой работы не должна превышать 10-20 % (при работах, связанных с наблюдением за видеотерминалами ЭВМ, К п - не более 5 %).

В настоящее время для искусственного освещения применяются следующие источники света:

Лампы накаливания, включая галогенные;

Дуговые натриевые газоразрядные лампы;

Дуговые ртутные галогенные лампы.

При необходимости различать цвета;

При работах, связанных с длительным напряжением зрения;

В производственных помещениях с непрерывным циклом производства или работами в три смены;

В детских и школьных учреждениях;

В помещениях, где освещение используется в качестве архитектурного оформления интерьеров.

Недостатком наиболее распространенных люминесцентных ламп является пульсация их светового потока, глубина колебания которого может достигать 55 %. Пульсация светового потока, кратная частоте переменного тока, может вызвать в определенных случаях «стробоскопический эффект», нарушающий правильное зрительное восприятие движущихся предметов, когда вращающийся предмет может казаться неподвижным. Пульсация светового потока приводит к быстрому утомлению зрения. В современных многоламповых светильниках с помощью специальных электрических схем подключения ламп удается устранить этот недостаток.

Для расчета осветительной установки при равномерном размещении светильников общего освещения и горизонтальной рабочей поверхности основным является так называемый метод коэффициента использования светового потока или метод коэффициента использования осветительной установки. При этом методе учитывается как световой поток источников света, так и световой поток, отраженный от стен, потолка и других поверхностей помещения.

Расчет ведется по формуле:

где Ф л - световой поток одного светильника, лм; Е н - нормированная освещенность, лк; S -площадь помещения, м 2 ; Z = 1,15 - коэффициент, учитывающий отношение средней освещенности к минимальной, при освещении линиями люминесцентных светильников Z = 1,1; К 3 - коэффициент запаса, принимаемый в зависимости от загрязненности воздуха в помещении; N -число светильников; h - коэффициент использования светового потока.

Коэффициент использования светового потока определяется по светотехническим таблицам. Он зависит от КПД и кривой распределения силы света светильника, коэффициентов отражения потолка, пола и стен, высоты подвеса светильника над расчетной поверхностью и конфигурации помещения, которая определяется индексом (показателем) помещения:

где а , b - ширина и длина помещения, м; h p - высота подвеса светильника над расчетной поверхностью, м.

Минимальная требуемая освещенность устанавливается по СНиП 23-05-95 или отраслевым нормам. Число светильников подбирается с учетом оптимального их расположения. По требуемому световому потоку подбирается ближайшая стандартная лампа, определяется ее мощность, а затем мощность всей осветительной установки.

Для расчета локализованного и местного освещения горизонтальных и наклонных поверхностей и освещения в тех случаях, когда отраженным светом можно пренебречь, применяется точечный метод, где используется формула

где Е - освещенность, лк; I - сила света в направлении от источника на данную точку рабочей поверхности, кд; a - угол между нормалью к рабочей поверхности и направлением светового потока на источник; К 3 - коэффициент запаса; h р - высота подвеса светильника над рабочей поверхностью, м.

Основными понятиями, характеризующими свет, являются световой поток, сила света, освещённость и яркость.

Световым потоком называют поток лучистой энергии, оцениваемый глазом по световому ощущению.

Хорошее освещение действует тонизирующие, создаёт хорошее настроение, улучшает протекание основных процессов нервной высшей деятельности.

Улучшение освещённости способствует улучшению работоспособности даже в тех случаях, когда процесс труда практически не зависит от зрительного восприятия.

90% информации человек получает через органы зрения. Свет оказывает положительное влияние на обмен веществ, сердечнососудистую систему, нервно-психическую сферу. Рациональное освещение способствует повышению производительности труда, его безопасности. При недостаточном освещении и плохом его качестве происходит быстрое утомление зрительных анализаторов, повышается травматичность. Слишком высокая яркость вызывает явление слепимости, нарушение функции глаза.

Искусственное освещение: создаётся искусственными источниками света (лампа накаливания и т.д.). Применяется при отсутствии или недостатке естественного. По назначению бывает: рабочим, аварийным, эвакуационным, охранным, дежурным.

По устройству бывает: местным, общим, комбинированным. Устраивать одно местное освещение нельзя.

Рациональное искусственное освещение должно обеспечивать нормальные условия для работы при допустимом расходе средств, материалов и электроэнергии.

До изобретения сверхярких светодиодов белого цвета (то есть с широким спектром излучения), человечество, казалось бы, располагало широчайшим арсеналом электрических источников света. Самые распространенные - лампы накаливания. Простые, дешевые, неприхотливые, они долгое время являлись абсолютным чемпионом по распространенности, попутно эволюционировав в еще один подвид - галогенные лампы, самые мощные по световому потоку. Но при всех своих достоинствах, лампы накаливания обладали и рядом существенных недостатков: низкий КПД, требовательность к питающему напряжению, конструктивную непрочность и хрупкость, подверженность выходу из строя от вибрации и перегрузок. Не говоря уже о том, что создать лампу накаливания, скажем, синего цвета практически нереально - чтобы получить синий цвет, нить нужно раскалить до десятка тысяч градусов по Цельсию - ни один из известных металлов или сплавов не может выдержать такую температуру. Поэтому различные цвета свечения получались путем применения световых фильтров, конечно же, на порядки снижая световой поток. В общем - неэффективно. Да и сильный нагрев ламп накаливания постоянно приводил к проблемам установки и размещения.

Более интересными казались газонаполненные люминесцентные лампы. Там источником света служило покрытие-люминофор, нанесенное на внутреннюю сторону колбы лампы. Светиться люминофор заставляло ультрафиолетовое излучение, получаемое путем прохождения высоковольтного разряда через газ внутри колбы. Лампы этого типа имеют более высокий КПД, комфортный спектр видимого света. Но они более дороги, менее надежны, требуют сложного высоковольтного источника питания. Не говоря уж о том, что помимо видимого света излучают еще ультрафиолет вплоть до рентгеновского спектра. Немного, но излучают - а это может нанести вред здоровью человека.

Существует еще множество специальных типов ламп. Это индукционные, ртутные, дуговые лампы, неоновые источники света, ксеноновая дуговая лампа, различные виды газоразрядных ламп. Но все они имеют ряд недостатков и пригодны только для узкой области применения. Светодиоды же, даже на сегодняшнем технологическом уровне, обладают настолько широким потенциалом применения, что вполне возможным становится предположение о скором вытеснении светодиодами практически всех прочих видов электрических источников света. Рассмотрим достоинства и недостатки светодиодных ламп.

Достоинства светодиодного источника света:

Высокий КПД. Светодиодные лампы наиболее экономично используют электроэнергию, позволяя получить соотношение (сила света / ватт энергии) на два порядка (в сто раз!) лучшее, чем у самых совершенных ламп накаливания. То есть для той же освещенности требуется в сто раз меньше электроэнергии.

Практически нулевая инертность светодиодов.

Срок службы светодиодных ламп как минимум в 25 раз больше, чем у традиционной лампочки накаливания.

В отличие от обычных ламп, возможность получить любой цвет излучения в видимом и невидимых спектрах, от инфракрасного до жесткого ультрафиолета.

Безопасность использования. Нет ни существенного нагрева, ни побочных излучений, не нужно опасно высокое напряжение, не используются ядовитые материалы, нет опасности получить травму из-за взрыва или разрушения осветительного прибора.

Простота создания направленных источников света.

К недостаткам можно отнести пока что весьма высокую цену. Светодиодные лампы пока не получили массовой распространенности (хотя понятно, что это дело времени), что обуславливает высокую стоимость. Второй недостаток сродни первому - требуется специальный источник питания - стабильного тока.

Аспирационная сеть производительностью I, ежечасно отводит от оборудования органическую пыль П в количестве G. Перед выбросом в атмосферу воздух очищается от пыли в циклоне. Концентрация пыли в воздухе на выходе из циклона Свых

Определить эффективность очистки воздуха в циклоне. Соответствует ли содержание пыли в выбрасываемом воздухе нормативным требованиям?

От каких факторов зависит эффективность очистки пылеулавливающего оборудования? Укажите достоинства и недостатки циклонов.

Эффективность очистки воздуха в циклоне определяют по формуле:

Е = L - Свых / 100

E = 16 - 55 /100 = 0,23

Фактором определяющим эффективность очистки пылеулавливающего оборудования является правильное применение аппаратов; стоимость очистки; расход электроэнергии; производительность.

Циклоны просты в разработке и изготовлении, надёжны, высокопроизводительны, могут использоваться для очистки агрессивных и высокотемпературных газов и газовых смесей. Недостатками являются высокое гидравлическое сопротивление, невозможность улавливания пыли с малыми размерами частиц и малая долговечность (особенно при очистке газов от пыли с высокими абразивными свойствами).

авария давление безопасный освещение

Введение

1. Виды искусственного освещения

2 Функциональное назначение искусственного освещения

3 Источники искусственного освещения. Лампы накаливания

3.1.Типы ламп накаливания

3.2. Конструкция лампы накаливания

3.3. Преимущества и недостатки ламп накаливания

4. Газоразрядные лампы. Общая характеристика. Область применения. Виды

4.1. Натриевая газоразрядная лампа

4.2. Люминесцентная лампа

4.3. Ртутная газоразрядная лампа

Список литературы

Введение

Назначение искусственного освещения - создать благоприятные условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения.

История искусственного освещения началась тогда, когда человек стал использовать огонь. Костер, факел и лучина стали первыми искусственными источниками света. Затем появились масляные лампы и свечи. В начале XIX века научились выделять газ и очищенные нефтепродукты, появилась керосиновая лампа, которая используется по сегодняшний день.

При зажигании фитиля возникает светящееся пламя. Пламя испускает свет только тогда, когда твердое тело нагревается этим пламенем. Не горение порождает свет, а лишь вещества, доведенные до раскаленного состояния, излучают свет. В пламени свет излучают раскаленные частички сажи. В этом можно убедиться, если поместить стекло над пламенем свечи или керосиновой лампы.

На улицах Москвы и Петербурга осветительные масляные фонари появилось в 30-х годах XVIII века. Затем масло заменили спиртово-скипидарной смесью. Позднее, в качестве горючего вещества, стали использовать керосин и, наконец, светильный газ, который получали искусственным путем. Световая отдача таких источников была очень мала из-за низкой цветовой температуры пламени. Она не превышала 2000К.

По цветовой температуре искусственный свет сильно отличается от дневного, и это различие давно было замечено по изменению цвета предметов при переходе от дневного к вечернему искусственному освещению. В первую очередь было замечено изменение цвета одежды. В ХХ веке с широким распространением электрического освещения изменение цвета при переходе к искусственному освещению уменьшилось, но не исчезло.

Сегодня редкий человек знает о заводах, производивших светильный газ. Газ получали при нагревании каменного угля в ретортах. Реторты - это большие металлические или глиняные полые сосуды, которые наполняли углем и нагревали в печи. Выделившийся газ очищали и собирали в сооружениях для хранения светильного газа - газгольдерах.

Более ста лет назад, в 1838 году, «Общество освещения газом Санкт-Петербурга» построило первый газовый завод. К концу XIX века почти во всех крупных городах России появились газгольдеры. Газом освещали улицы, железнодорожные станции, предприятия, театры и жилые дома. В Киеве инженером А.Е.Струве газовое освещение было устроено в 1872году.

Создание электрогенераторов постоянного тока с приводом от паровой машины позволило широко использовать возможности электричества. В первую очередь изобретатели позаботились об источниках света и обратили внимание на свойства электрической дуги, которую впервые наблюдал Василий Владимирович Петров в 1802 году. Ослепительно яркий свет позволял надеяться, что люди смогут отказаться от свечей, лучины, керосиновой лампы и даже газовых фонарей.

В дуговых светильниках приходилось постоянно пододвигать поставленные «носами» друг к другу электроды - они достаточно быстро выгорали. Сначала их сдвигали вручную, затем появились десятки регуляторов, самым простым из которых был регулятор Аршро. Светильник состоял из неподвижного положительного электрода, закрепленного на кронштейне, и подвижного отрицательного, соединенного с регулятором. Регулятор состоял из катушки и блока с грузом.

При включении светильника через катушку протекал ток, сердечник втягивался в катушку и отводил отрицательный электрод от положительного. Дуга поджигалась автоматически. При уменьшении тока втягивающее усилие катушки уменьшалось и отрицательный электрод поднимался под действием груза. Широкого распространения эта и другие системы не получили из-за низкой надежности.

В 1875 году Павел Николаевич Яблочков предложил надежное и простое решение. Он расположил угольные электроды параллельно, разделив их изолирующим слоем. Изобретение имело колоссальный успех, и «свеча Яблочкова» или «Русский свет» нашел широкое распространение в Европе.

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света, или для освещения помещения в часы суток, когда естественная освещенность отсутствует.

1. Виды искусственного освещения

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т. д.). Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев аварий.

2. Функциональное назначение искусственного освещения

По функциональному назначению искусственное освещение подразделяется на рабочее , дежурное , аварийное .

Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта.

Дежурное освещение включается во вне рабочее время.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Для искусственного освещения в этом случае целесообразно использовать люминесцентные лампы.

3. Источники искусственного освещения . Лампы накаливания.

В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные.

Лампа нака ливания -- электрический источник света, светящимся телом которого служит так называемое тело накала (тело накал- проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления тела накала в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX - первой половине XX в. Тело накала изготавливалось из более доступного и простого в обработке материала -- углеродного волокна.

3.1. Типы ламп накаливания

Промышленность выпускает различные типы ламп накаливания:

вакуумные , газонаполненные (наполнитель смесь аргона и азота), биспиральные , с криптоновым наполнением .

3.2. Конструкция лампы накала

Рис.1 Лампа накаливания

Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Конструкции лампы накала весьма разнообразны и зависят от назначения конкретного вида ламп. Однако общими для всех ламп накала являются следующие элементы: тело накала, колба, токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

3.3. Преимущества и недостатки ламп накаливания

Преимущества:

Малая стоимость

Небольшие размеры

Ненужность пускорегулирующей аппаратуры

При включении они зажигаются практически мгновенно

Отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации

Возможность работы как на постоянном токе (любой полярности), так и на переменном

Возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)

Отсутствие мерцания и гудения при работе на переменном токе

Непрерывный спектр излучения

Устойчивость к электромагнитному импульсу

Возможность использования регуляторов яркости

Нормальная работа при низкой температуре окружающей среды

Недостатки:

Низкая световая отдача

Относительно малый срок службы

Резкая зависимость световой отдачи и срока службы от напряжения

Цветовая температура лежит только в пределах 2300--2900 K, что придаёт свету желтоватый оттенок

Лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт -- 145°C, 75 Вт -- 250°C, 100 Вт -- 290°C, 200 Вт -- 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности потребляемой от электрической сети, весьма мал и не превышает 4%

4. Газоразрядные лампы . Общая характеристика. Область применения. Виды.

В последнее время принято называть газоразрядные лампы разрядными лампами. Подразделяются на разрядные лампы высокого и низкого давления. Подавляющее большинство разрядных ламп работают в парах ртути. Обладают высокой эффективностью преобразования электрической энергии в световую. Эффективность измеряется отношении люмен/Ватт.

Разрядные источники света (газоразрядные лампы) постепенно вытесняют привычные ранее лампы накаливания, однако недостатками остаются линейчатый спектр излучения, утомляемость от мерцания света, шум пускорегулирующей аппаратуры (ПРА), вредность паров ртути в случае попадания в помещение при разрушении колбы, невозможность мгновенного перезажигания для ламп высокого давления.

В условиях продолжающегося роста цен на энергоносители и удорожания осветительной арматуры, ламп и комплектующих все более насущной становится потребность во внедрении технологий, позволяющих сократить непроизводственные затраты.

Общая характеристика газоразрядных ламп

Срок службы от 3000 часов до 20000.

Эффективность от 40 до 150 лм/Вт.

Цвет излучения: тепло-белый (3000 K) или нейтрально-белый (4200 K)

Цветопередача: хорошая (3000 K: Ra>80) , отличная (4200 K: Ra>90)

Компактные размеры излучающей дуги, позволяют создавать световые пучки высокой интенсивности

Области применения газоразрядных ламп.

Магазины и витрины, офисы и общественные места

Декоративное наружное освещение: освещение зданий и пешеходных зон

Художественное освещение театров, кино и эстрады (профессиональное световое оборудование)

Виды газоразрядных ламп.

Наибольшей эффективностью, на сегодняшний день, обладают лампы разрядные в парах натрия . Кроме этого вида разрядных ламп широко распространены люминесцентные лампы (разрядные лампы низкого давления), металлогалогенные лампы , дуговые ртутные люминесцентные лампы . Меньше распространены лампы в парах ксенон а .

4.1. Натриевая газоразрядная лампа

Натриевая газоразрядная лампа (НЛ) - электрический источник света, светящимся телом которого служит газовый разряд в парах натрия. Поэтому преобладающим в спектре таких ламп является резонансное излучение натрия; лампы дают яркий оранжево-жёлтый свет. Эта специфическая особенность НЛ (монохроматичность излучения) вызывает при освещении ими неудовлетворительное качество цветопередачи. Из-за особенностей спектра НЛ применяются в основном для уличного освещения, утилитарного, архитектурного и декоративного. Применение НЛ для освещения производственных и общественных зданий крайне ограничено и обуславливается, как правило, требованиями эстетического характера.

В зависимости от величины парциального давления паров натрия лампы подразделяют на натриевые лампы низкого давления (НЛНД) и натриевые лампы высокого давления (НЛВД)

Исторически первыми из натриевых ламп были созданы натриевые лампы низкого давления (НЛНД) . В 1930-х гг. этот вид источников света стал широко распространяться в Европе. В СССР велись эксперименты по освоению производства НЛНД, существовали даже модели, выпускавшиеся серийно, однако внедрение их в практику общего освещения прервалось из-за освоения более технологичных ламп ДРЛ, которые, в свою очередь, стали вытесняться НЛВД.

НЛНД отличаются рядом особенностей, существенно затрудняющих как их производство, так и эксплуатацию. Во-первых, пары натрия при высокой температуре дуги весьма агрессивно воздействуют на стекло колбы, разрушая его. Из-за этого горелки НЛНД обычно выполняются из боросиликатных стёкол. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима горелки последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».

Создание натриевых ламп высокого давления (НЛВД) потребовало иного решения проблемы защиты материала горелки от воздействия паров натрия: была разработана технология изготовления трубчатых горелок из оксида алюминия Al2O3. Такая керамическая горелка из термически и химически устойчивого и хорошо пропускающего свет материала помещается во внешнюю колбу из термостойкого стекла. Полость внешней колбы вакуумируется и тщательно дегазируется. Последнее необходимо для поддержания нормального температурного режима работы горелки и защиты ниобиевых токовых вводов от воздействия атмосферных газов.

Горелка НЛВД наполняется буферным газом, в качестве которого служат газовые смеси различного состава, а также в них дозируется амальгама натрия (сплав с ртутью). Существуют НЛВД «с улучшенными экологическими свойствами» -- безртутные.

4.2. Люминесцентная лампа

Люминесцентная лампа -- газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов.

Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Люминесцентные лампы -- наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп -- избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

4.3. Ртутная газоразрядная лампа

Ртутные г азоразрядные лампы представляют собой электрический источник света, в котором для генерации оптического излучения используется газовый разряд в парах ртути. Для наименования всех видов таких источников света в отечественной светотехнике используется термин "разрядная лампа", включенный в состав Международного светотехнического словаря, утверждённого Международной комиссией по освещению.

В зависимости от давления наполнения различают разрядные лампы низкого давления (РЛНД),разрядные лампы высокого давления (РЛВД) и разрядные лампы сверхвысокого давления (РЛСВД).

К разрядным лампам низкого давления относят ртутные лампы с величиной парциального давления паров ртути в установившемся режиме менее 100 Па. Для разрядных ламп низкого давления эта величина составляет порядка 100 кПа, а для разрядных ламп сверхвысокого давления - 1 МПа и более.

Для общего освещения цехов, улиц, промышленных предприятий и других объектов, не предъявляющих высоких требований к качеству цветопередачи, применяются разрядные лампы высокого давления типа ДРЛ.

ДРЛ (Дуговая Ртутная Люминофорная) - принятое в отечественной светотехнике обозначение РЛВД, в которых для исправления цветности светового потока, направленного на улучшение цветопередачи, используется излучение люминофора, нанесённого на внутреннюю поверхность колбы.

Устройство лампы ДРЛ

Первые лампы ДРЛ изготовлялись двухэлектродными. Для зажигания таких ламп требовался источник высоковольтных импульсов. В качестве него применялось устройство ПУРЛ-220 (Пусковое Устройство Ртутных Ламп на напряжение 220 В). Электроника тех времен не позволяла создать достаточно надёжных зажигающих устройств, а в состав ПУРЛ входил газовый разрядник, имевший срок службы меньший, чем у самой лампы. Поэтому в 1970-х гг. промышленность постепенно прекратила выпуск двухэлектродных ламп. На смену им пришли четырёхэлектродные, не требующие внешних зажигающих устройств.

Для согласования электрических параметров лампы и источника электропитания практически все виды РЛ, имеющие падающую внешнюю вольт-амперную характеристику, нуждаются в использования пускорегулирующего аппарата, в качестве которого в большинстве случаев используется дроссель, включенный последовательно с лампой.

Рис.1 Ртутная лампа высокого давления.

Четырёхэлектродная лампа ДРЛ состоит из внешней стеклянной колбы (1), снабжённой резьбовым цоколем (2). На ножке лампы смонтирована установленная на геометрической оси внешней колбы кварцевая горелка (разрядная трубка) (3), наполненная аргоном с добавкой ртути. Четырёхэлектродные лампы имеют основные электроды (4) и расположенные рядом с ними вспомогательные(зажигающие) электроды (5). Каждый зажигающий электрод соединён с находящимся в противоположном конце разрядной трубки основным электродом через токоограничвающее сопротивление (6). Вспомогательные электроды облегчают зажигание лампы и делают её работу в период пуска более стабильной.

В последнее время ряд зарубежных фирм изготавливает трёхэлектродныелампы ДРЛ, оснащённые только одним зажигающим электродом. Эта конструкция отличается только большей технологичностью в производстве, не имея никаких иных преимуществ перед четырёхэлектродными.

Принцип действия

Горелка лампы изготавливается из тугоплавкого и химически стойкого прозрачного материала (кварцевого стекла или специальной керамики) и наполняется строго дозированными порциями инертных газов. Кроме того, в горелку вводится металлическая ртуть, которая в холодной лампе имеет вид компактного шарика или оседает в виде налёта на стенках колбы и (или) электродах. Светящимся телом РЛВД является столб дугового электрического разряда.

Процесс зажигания лампы, оснащённой зажигающими электродами, выглядит следующим образом. При подаче на лампу питающего напряжения между близко расположенными основным и зажигающим электродом возникает тлеющий разряд, чему способствует малое расстояние между ними, которое существенно меньше расстояния между основными электродами, следовательно, ниже и напряжение пробоя этого промежутка. Возникновение в полости разрядной трубки достаточно большого числа носителей заряда (свободных электронов и положительных ионов) способствует пробою промежутка между основными электродами и зажиганию между ними тлеющего разряда, который практически мгновенно переходит в дуговой.

Стабилизация электрических и световых параметров лампы наступает через 10 - 15 минут после включения. В течение этого времени ток лампы существенно превосходит номинальный и ограничивается только сопротивлением пускорегулирующего аппарата. Продолжительность пускового режима сильно зависит от температуры окружающей среды - чем холоднее, тем дольше будет разгораться лампа.

Электрический разряд в горелке ртутной дуговой лампы создаёт видимое излучение голубого или фиолетового (а не белого как принято считать) цвета, а также мощное ультрафиолетовое излучение. Последнее возбуждает свечение люминофора, нанесённого на внутренней стенке внешней колбы лампы. Красноватое свечение люминофора, смешиваясь с бело-зеленоватым излучением горелки, даёт яркий свет, близкий к белому.

Изменение напряжения питающей сети в большую или меньшую сторону вызывает соответствующее изменение светового потока. Отклонение питающего напряжения на 10 - 15% допустимо и сопровождается изменением светового потока лампы на 25 - 30%. При уменьшении напряжения питания менее 80% номинального лампа может не зажечься, а горящая - погаснуть.

При горении лампа сильно нагревается. Это требует использования в световых приборах с дуговыми ртутными лампами термостойких проводов, предъявляет серьёзные требования к качеству контактов патронов. Поскольку давление в горелке горячей лампы существенно возрастает, увеличивается и напряжение её пробоя. Величина напряжения питающей сети оказывается недостаточной для зажигания горячей лампы. Поэтому перед повторным зажиганием лампа должна остыть. Этот эффект является существенным недостатком дуговых ртутных ламп высокого давления, поскольку даже весьма кратковременный перерыв электропитания гасит их, а для повторного зажигания требуется длительная пауза на остывание.

Традиционные области применения ламп ДРЛ

Освещение открытых территорий, производственных, сельскохозяйственных и складских помещений. Везде, где это связано с необходимостью большой экономии электроэнергии, эти лампы постепенно вытесняются НЛВД (освещение городов, больших строительных площадок, высоких производственных цехов и др.).

Список литературы 1. Безопасность жизнедеятельности. Конспект лекций. Ч. 2/ П.Г. Белов, А.Ф. Козьяков. С.В. Белов и др.; Под ред. С.В. Белова. - М.: ВАСОТ. 1993.2. Безопасность жизнедеятельности/ Н.Г. Занько. Г.А. Корсаков, К. Р. Малаян и др. Под ред. О.Н. Русака. - С.-П.: Изд-во Петербургской лесотехнической академии, 1996.3. Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. М.: Энергоатомиздат, 1995.